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1 Federated Optimization

Federated learning (FL) enables a large amount of edge computing devices to jointly optimize (learn) a
model without data sharing. FL has three unique characters that distinguish it from the standard parallel

optimization.

e The training data are massively distributed over an incredibly large number of devices, and the con-
nection between the central server and a device is slow.

o The FL system does not have control over user’s device (stragglers).

e The training data are non-i.i.d.
Problem Formulation:

k=1

H;in{f(x) = Zpkfk(x)} (1)

where K is the number of devices, and py, is the weight of the Ath device such that py > 0 and ), pr = 1.

Suppose that kth device holds my, training data: zy 1,...,2Zgm,, then
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Figure 1: Federated Learning for Credit Scoring

Example 1 (Federated Least Squares Problem) Suppose that we have K banks, they would like to jointly to
train a model to predict the customer’s income for “user profile” or to train a score system to estimate their



financial credit (see Figure 1). They adopt a linear regression model, then
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However, we cannot combine the personal data set together due to the sensitive information and law regula-
tions (E.g., GDPR). Then the idea is to transmit some information to a central server without sharing any

dataset.

For the kth bank, it considers

1
min §||Akx — by

Denote an operator Gi(x) = x — sVx(3[|Apx — bi|?) = (I — sA] Ax)x + sA} by.

descent algorithm is
Step 1: XZH/Q = GE(xl),
1 X
. 1. t+1/2
Step 2: x!t1 .= Zxk ,
Step 8: xitt.=x""' vk € [K],

where GE(x) means that runs GD on the kth device E times.
First, let us try to compute Gz (x) as
Gr(x) = Gr(Gr(x)) = Gi((I — sA} Ap)x + sA] by)
= (I —sA} A ((I — sA] Ap)x + sAL by) + sA] by,
= (I — sA] Ap)?x + s[I + (I — sA] Ap)] AL by.

By induction, you can obtain that

E—-1
GP(x) = (I - sAL Ap)Px + s[Y_ (I — sA] Ap)*] Al by
e=0

The federated gradient

Thus,
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That is xtTt = Bx! + C, where
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We konw that
t+1 _ gtt+1,0
=B"x 4 (I -B)~

So,

Xpap = tlir&xt =({ - B)

Compute that
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We compare this result with
X;g=(ATA)1ATD =
If £ =1, then Xpop = X} g. Otherwise, Xpop # X7

1.1 FedAvg and Local SGD

E:ATAk 1§:ATbk

FedAvg algorithm is proposed by [1] for training deep models distributed and efficiently. They used the
mini-batch SGD as the algorithm for local training. Here, we present a slightly different setting called Local
SGD which means that the SGD as the algorithm for local training.

Algorithm 1 Local Stochastic Gradient Descent

1: Input: Assumes that K clients index by k, F is the number of
the total iteration number is T', and ¢ = 0.

local iterations, s, is the learning rate x° € R,

2: fort=1,F,2FE,...,T do
3: fork=1,...,K do
4: Local Update: v _
X e — s VG 65, =0, B - 1,
where 5”7“ is a sample uniformly chosen from the local data and s;+; is the learning rate.

5. end for
6:  Server Update by Aggregation:

K

Pt

k=1

7. Update Local Parameter:
xiTF — x"F vk =1,... K.

8: end for

9: Output: x7.

Let us summary the local SGD algorithm as follows:



e Local Update: _ ‘ _ ,
)EH s VA ), = 0, B

where §,tc+i is a sample uniformly chosen from the local data and s, is the learning rate.

e Server Update by Aggregation:

K
XN pex
k=1

e Update Local Parameter:
it xTE Vg =1,... K.

Let T be the total interactions, then [27'/E] is the communication number.

1.2 Convergence

Assumption 1 (A1) fi is B-smooth for all k € [K].
Assumption 2 (A2) fi is a-strongly convez for oll k € [K].

Assumption 3 (A3)

Control variance:
E(V fi(x}, &) — Ve(xh)|? < o}, VE € [K].

Assumption 4 (A4)

Bounded Gradient:
E(V fi(x}. 0117 < G,V € [K],t € [T].

Let I' = f* — Zszl prfr for quantifying the degree of non-i.i.d which reflects the heterogeneity of data
distribution. If data is i.i.d., then I" obviously goes to zero as m — oo.

Theorem 1 [2] Assume that A1, A2, A3 and A/ hold. Let k = 8/a,y = max{8k, E}, s; = ﬁ, then

K 2B

ELF(T) — 1] € g (5 + GBI x|, ™)

where B = Zszl pioi + 68T + 8(E — 1)2G2.
To justify the above theorem, let us define
Vil =i = s V(. 6D,

and

Xt+1 _ VZ+17 t+1 g IE7
k Zszl pkv}:"l, t+1€Zlg,

where g = {iE|i = 1,2,...}. We further define two virtual sequences

K K
ot § t ot E t
v = PrVy, X = PrXg-
k=1 k=1



K K
g => peVI(xt), g => peVi(xh, &).

k=1 k=1
Thus, Egt = gt. If t + 1 € Zg, then

K
t+1 _ t+1 _ ot ot
X, —E PEVy, =V =X,
k=1

Lemma 1

E[¢"" — x| < (1 - sia)B||X" — x|* + s{E|g" — &'
K
+68s7T + 2E[Y pr|x" — xi||°].
k=1

Lemma 2 [If A3 holds, then

K
Ellg’ — &' <> pioi.
k=1

Lemma 3 If A/ holds and s; < 2844, then
K
E[Y pallx" = xil|*] < 4s7(E —1)°G%.
k=1
Now we have all the materials to prove Theorem 1.
Proof 1 According to above three lemmas, then
At+1 S (]. — StOé)At + S?B,

where A, = E||x" — x*||2 and B = Y1 p?o? + 66T + 8(E — 1)2G2.

For a diminishing learning rate sy = #,E > 1/a and v > 0, such that s; < min{l/a,1/48} = 1/48 and
st < 2s44p. We will prove

where v = max{ z{ji’ (v+ DA}, by induction.

For t = 1, it already holds, then assume the results holds for t > 1. We know that (t +v)?> —1 =
(t+y—1({t+~v+1) < (t+7)? and 2B — (ba — 1)v < 0, thus, it follows that

At-‘,—l < (1 - StOé)At + S?B

Lo v B
S(1_ ) + 2
t+vy' v+t (t+7)
_tty-1) B la—1
o (t+)? (y+1)?  (t+9)?
v
TyFt+1
Moreover, by the B-smooth property,
_ B B
E[f(x"] — f* < ZA; < :
R I



Choose £ =2/a,k = B/a,v = max{8k, E}, s; =

E[f(x"] - f* <

Let xt = xT', then we obtain the final results.
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