
Optimization Theory and Algorithm II October 17, 2022

Lecture 11
Lecturer:Xiangyu Chang Scribe: Xiangyu Chang

Edited by: Xiangyu Chang

1 Federated Optimization

Federated learning (FL) enables a large amount of edge computing devices to jointly optimize (learn) a
model without data sharing. FL has three unique characters that distinguish it from the standard parallel
optimization.

• The training data are massively distributed over an incredibly large number of devices, and the con-
nection between the central server and a device is slow.

• The FL system does not have control over user’s device (stragglers).

• The training data are non-i.i.d.

Problem Formulation:

min
x

{
f(x) =

K∑
k=1

pkfk(x)

}
(1)

where K is the number of devices, and pk is the weight of the kth device such that pk ≥ 0 and
∑

k pk = 1.
Suppose that kth device holds mk training data: zk,1, . . . , zk,mk

, then

fk(x) =
1

mk

mk∑
j=1

ℓ(x; zk,j).

Figure 1: Federated Learning for Credit Scoring

Example 1 (Federated Least Squares Problem) Suppose that we have K banks, they would like to jointly to
train a model to predict the customer’s income for “user profile” or to train a score system to estimate their

1



financial credit (see Figure 1). They adopt a linear regression model, then

min
x

1

2
∥Ax− b∥2 =

1

2

K∑
k=1

∥Akx− bk∥2,

where

A =

A1

...
AK

 ∈ Rm×n,b =

b1

...
bK

 ∈ Rm.

However, we cannot combine the personal data set together due to the sensitive information and law regula-
tions (E.g., GDPR). Then the idea is to transmit some information to a central server without sharing any
dataset.

For the kth bank, it considers
min
x

1

2
∥Akx− bk∥2.

Denote an operator Gk(x) = x − s∇x(
1
2∥Akx − bk∥2) = (I − sA⊤

k Ak)x + sA⊤
k bk. The federated gradient

descent algorithm is

Step 1: x
t+1/2
k := GE

k (x
t
k), (2)

Step 2: xt+1 :=
1

K

K∑
k=1

x
t+1/2
k , (3)

Step 3: xt+1
k := xt+1, ∀k ∈ [K], (4)

where GE
k (x) means that runs GD on the kth device E times.

First, let us try to compute G2
k(x) as

G2
k(x) = Gk(Gk(x)) = Gk((I − sA⊤

k Ak)x+ sA⊤
k bk)

= (I − sA⊤
k Ak)((I − sA⊤

k Ak)x+ sA⊤
k bk) + sA⊤

k bk

= (I − sA⊤
k Ak)

2x+ s[I + (I − sA⊤
k Ak)]A

⊤
k bk.

By induction, you can obtain that

GE
k (x) = (I − sA⊤

k Ak)
Ex+ s[

E−1∑
e=0

(I − sA⊤
k Ak)

e]A⊤
k bk. (5)

Thus,

xt+1 = x̄t+1/2 =
1

K

∑
k

x
t+1/2
k =

1

K

∑
k

GE
k (x

t
k)

=
1

K

∑
k

GE
k (x

t) =
1

K
[

K∑
k=1

(I − sA⊤
k Ak)

E ]xt +
s

K

K∑
k=1

{[
E−1∑
e=0

(I − sA⊤
k Ak)

e]A⊤
k bk}.

That is xt+1 = Bxt + C, where

B =
1

K

∑
k

GE
k (x

t) =
1

K
[

K∑
k=1

(I − sA⊤
k Ak)

E ]

and

C =
s

K

K∑
k=1

{[
E−1∑
e=0

(I − sA⊤
k Ak)

e]A⊤
k bk}.

2



We konw that

xt+1 = Bt+1x0 + (I +B + · · ·+Bt)C

= Bt+1x0 + (I −B)−1(I −Bt+1)C.

So,
x∗
FGD = lim

t→∞
xt = (I −B)−1C.

Compute that

I −B =
1

K

K∑
k=1

[I − (I − sA⊤
k Ak)

E ]

=
1

K

K∑
k=1

(sA⊤
k Ak)

E−1∑
e=0

(I − sA⊤
k Ak)

e.

x∗
FGD = [

K∑
k=1

A⊤
k Ak

E−1∑
e=0

(I − sA⊤
k Ak)

e]−1
K∑

k=1

{[
E−1∑
e=0

(I − sA⊤
k Ak)

e]A⊤
k bk}. (6)

We compare this result with

x∗
LS = (A⊤A)−1A⊤b = [

K∑
k=1

A⊤
k Ak]

−1
K∑

k=1

A⊤
k bk.

If E = 1, then x∗
FGD = x∗

LS . Otherwise, x∗
FGD ̸= x∗

LS .

1.1 FedAvg and Local SGD

FedAvg algorithm is proposed by [1] for training deep models distributed and efficiently. They used the
mini-batch SGD as the algorithm for local training. Here, we present a slightly different setting called Local
SGD which means that the SGD as the algorithm for local training.

Algorithm 1 Local Stochastic Gradient Descent

1: Input: Assumes that K clients index by k, E is the number of local iterations, st is the learning rate x0 ∈ Rn,
the total iteration number is T , and t = 0.

2: for t = 1, E, 2E, . . . , T do
3: for k = 1, . . . ,K do
4: Local Update:

xt+i+1
k ← xt+i

k − st+i∇fk(xt+i
k , ξt+i

k ), i = 0, . . . , E − 1,

where ξt+i
k is a sample uniformly chosen from the local data and st+i is the learning rate.

5: end for
6: Server Update by Aggregation:

xt+E ←
K∑

k=1

pkx
t+E
k .

7: Update Local Parameter:
xt+E
k ← xt+E , ∀k = 1, . . . ,K.

8: end for
9: Output: xT .

Let us summary the local SGD algorithm as follows:

3



• Local Update:
xt+i+1
k ← xt+i

k − st+i∇fk(xt+i
k , ξt+i

k ), i = 0, . . . , E − 1,

where ξt+i
k is a sample uniformly chosen from the local data and st+i is the learning rate.

• Server Update by Aggregation:

xt+E ←
K∑

k=1

pkx
t+E
k .

• Update Local Parameter:
xt+E
k ← xt+E ,∀k = 1, . . . ,K.

Let T be the total interactions, then [2T/E] is the communication number.

1.2 Convergence

Assumption 1 (A1) fk is β-smooth for all k ∈ [K].

Assumption 2 (A2) fk is α-strongly convex for all k ∈ [K].

Assumption 3 (A3)

Control variance:
E∥∇fk(xt

k, ξ
t
k)−∇fk(xt

k)∥2 ≤ σ2
k,∀k ∈ [K].

Assumption 4 (A4)

Bounded Gradient:
E∥∇fk(xt

k, ξ
t
k)∥2 ≤ G, ∀k ∈ [K], t ∈ [T ].

Let Γ = f∗ −
∑K

k=1 pkf
∗
k for quantifying the degree of non-i.i.d which reflects the heterogeneity of data

distribution. If data is i.i.d., then Γ obviously goes to zero as m→∞.

Theorem 1 [2] Assume that A1, A2, A3 and A4 hold. Let κ = β/α, γ = max{8κ,E}, st = 2
α(γ+t) , then

E[f(xT )− f∗] ≤ κ

γ + T − 1
(
2B

α
+

αγ

2
E[∥x0 − x∗∥2]), (7)

where B =
∑K

k=1 p
2
kσ

2
k + 6βΓ + 8(E − 1)2G2.

To justify the above theorem, let us define

vt+1
k = xt

k − st∇fk(xt
k, ξ

t
k),

and

xt+1
k =

{
vt+1
k , t+ 1 ̸∈ IE ,∑K
k=1 pkv

t+1
k , t+ 1 ∈ IE ,

where IE = {iE|i = 1, 2, . . . }. We further define two virtual sequences

v̄t =

K∑
k=1

pkv
t
k, x̄t =

K∑
k=1

pkx
t
k.

4



ḡt =

K∑
k=1

pk∇fk(xt
k), gt =

K∑
k=1

pk∇fk(xt
k, ξ

t
k).

Thus, Egt = ḡt. If t+ 1 ∈ IE , then

xt+1
k =

K∑
k=1

pkv
t+1
k = v̄t+1 = x̄t+1.

Lemma 1

E∥v̄t+1 − x∗∥2 ≤ (1− stα)E∥x̄t − x∗∥2 + s2tE∥gt − ḡt∥2

+ 6βs2tΓ + 2E[
K∑

k=1

pk∥x̄t − xt
k∥2].

Lemma 2 If A3 holds, then

E∥gt − ḡt∥2 ≤
K∑

k=1

p2kσ
2
k.

Lemma 3 If A4 holds and st ≤ 2st+E, then

E[
K∑

k=1

pk∥x̄t − xt
k∥2] ≤ 4s2t (E − 1)2G2.

Now we have all the materials to prove Theorem 1.

Proof 1 According to above three lemmas, then

∆t+1 ≤ (1− stα)∆t + s2tB,

where ∆t = E∥x̄t − x∗∥2 and B =
∑K

k=1 p
2
kσ

2
k + 6βΓ + 8(E − 1)2G2.

For a diminishing learning rate st =
ℓ

t+γ , ℓ > 1/α and γ > 0, such that s1 ≤ min{1/α, 1/4β} = 1/4β and
st ≤ 2st+E. We will prove

∆t ≤
ν

γ + t

where ν = max{ ℓ2B
ℓα−1 , (γ + 1)∆1}, by induction.

For t = 1, it already holds, then assume the results holds for t > 1. We know that (t + γ)2 − 1 =
(t+ γ − 1)(t+ γ + 1) ≤ (t+ γ)2 and ℓ2B − (ℓα− 1)ν < 0, thus, it follows that

∆t+1 ≤ (1− stα)∆t + s2tB

≤ (1− ℓα

t+ γ
)

ν

γ + t
+

ℓ2B

(t+ γ)2

=
t+ γ − 1

(t+ γ)2
ν +

[
ℓ2B

(γ + t)2
− ℓα− 1

(t+ γ)2
ν

]
≤ ν

γ + t+ 1
.

Moreover, by the β-smooth property,

E[f(x̄t]− f∗ ≤ β

2
∆t ≤

βν

2(γ + t)
.

5



Choose ℓ = 2/α, κ = β/α, γ = max{8κ,E}, st = 2
α(γ+t) , then

E[f(x̄t]− f∗ ≤ κ

γ + t
(
2B

α
+

α(γ + 1)

2
∆1).

Let x̄t = xT , then we obtain the final results.

References

[1] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelligence
and statistics, pages 1273–1282. PMLR, 2017.

[2] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
fedavg on non-iid data. In International Conference on Learning Representations, 2019.

6


	Federated Optimization
	FedAvg and Local SGD
	Convergence


